Quantum Phenomena and Biology

ALEXANDRA OLAYA-CASTRO
DEPARTMENT OF PHYSICS AND ASTRONOMY
UNIVERSITY COLLEGE LONDON

Bogota 15 May 2013
FACT OR FICTION?

“Quantum biology is a speculative and interdisciplinary field that seeks to link quantum physics and the life sciences”

http://www.energetic-medicine.net/quantum-biology.html
FACT OR FICTION?

“Quantum biology is a speculative and interdisciplinary field that seeks to link quantum physics and the life sciences”
Quantum in Biology:

Physics of biomolecules and the relevance of these properties for \textit{biological function}

\textit{biochemistry and molecular biology} meets \textit{quantitative laws of quantum physics}
Biological processes of interest

Figure taken from Lambert et al Nature Physics, 9 10-18 (2013)
Relating quantum phenomena to **biomolecular** function

nano-scale system

LH antennae

Odor receptor

cryptochrome

nano-scale process

Energy transport

Molecular sensing

Magnetic sensing

Quantum phenomena

Superposition of collective electronic states?

Inelastic electron tunnelling?

Quantum correlated radical-pairs?
FACT OR FICTION?

“Beard-Einstein conflation is a fundamental theory underlying high-efficient energy transfer in photosynthesis”

Solar: Ian McEwan
Open quantum system description

“Observable” system

- photo-induced process
- electronic degrees of freedom
- environment

“Measurement”
Example: light-harvesting antenna

System: collective electronic excitations

Environment: pigment vibrations, protein vibrations, low-energy solvent modes, etc. Generally described as (quantum or classical) “springs”.

Measurement: linear and non-linear spectroscopy
Example: Two-pigments

Collective electronic excitation states

\[X \left(E_X \right) \quad Y \left(E_Y \right) \]
Quantum regime

<table>
<thead>
<tr>
<th>PXX</th>
<th>PXY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYX</td>
<td>PYY</td>
</tr>
</tbody>
</table>

off-diagonal = coherencias

Classical regime

<table>
<thead>
<tr>
<th>PXX</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PYY</td>
</tr>
</tbody>
</table>

diagonal = probabilities
Acclimation of quantum properties

B800 nm
B850 nm
B820 nm

Low-light
High-light

Wavelength [nm]
Gene expression controls some quantum properties
Photon echo spectroscopy

Courtesy of Gregory D Scholes
Evidence of quantum superpositions during dynamics
Example: Symmetry-tuning of transfer efficiencies

F. Fassioli, A. Nazir and A. Olaya-Castr, JPCL 1, 2139 (2010)
Relating quantum phenomena to **biomolecular** function

<table>
<thead>
<tr>
<th>nano-scale system</th>
<th>nano-scale process</th>
<th>Quantum phenomena</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH antennae</td>
<td>Energy transport</td>
<td>Superposition of collective electronic states?</td>
</tr>
<tr>
<td>Odor receptor</td>
<td>Molecular sensing</td>
<td>Inelastic electron tunnelling?</td>
</tr>
<tr>
<td>cryptochrome</td>
<td>Magnetic sensing</td>
<td>Quantum correlated radical-pairs?</td>
</tr>
</tbody>
</table>

Scientific challenge:
Does this matter for biology

Quantum phenomena and Biology

Alexandra Olaya-Castro
Gracias por su atención!!